Applications, applicability, and Frege’ s Constraint. Some remarks on Contemporary Platonism

Journal title PARADIGMI
Author/s Andrea Sereni
Publishing Year 2014 Issue 2013/3
Language English Pages 20 P. 91-110 File size 114 KB
DOI 10.3280/PARA2013-003007
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

Le idee di Frege sulle applicazioni e l’applicabilità dell’aritmetica, e della matematica in generale, suggeriscono un certo numero di requisiti che un resoconto filosofico dell’aritmetica (della matematica) dovrebbe soddisfare. I punti rilevanti di tali requisiti sono enucleati e precisati e viene discusso come essi possano essere valutati dai sostenitori di posizioni platoniste contemporanee, sia di quelle sul versante latamente razionalista: il neo-logicismo di Hale e Wright e lo strutturalismo ante rem di Shapiro, sia di quelle sul lato empirista e naturalista: il platonismo indispensabilista e il platonismo "di default" di Burgess e Rosen. L’autore conclude offrendo alcune formulazioni deboli del Frege’s Constraint che, appropriatamente formulato, mostra di poter essere soddisfatto anche da posizioni non logiciste e non platoniste.

Keywords: Applicability of Mathematics, Frege’s Constraint, Neo-logicism, Structuralism, Empiricist platonism, Naturalist Platonism.

  1. Frege G. (1884). Die Grundlagen der Arithmetik. Eine logisch-mathematische Untersuchung über den Begriff der Zahl. Breslau: Koebner (Engl. tr. by J.L. Austin: The Foundations of Arithmetic. A Logico-Mathematical Enquiry into the Concept of Number. Oxford: Blackwell, 1974).
  2. Frege G. (1893-1903). Grundgesetze der Arithmetik begriffsschriftlich abgeleitet. I (1893), II (1903). (partial Engl. tr. by M. Furth: The Basic Laws of Arithmetic. Exposition of the System. Berkeley-Los Angeles: University of California Press, 1967).
  3. Garavaso P. (2005). On Frege’s Alleged Indispensability Argument. Philosophia Mathematica (III), 13: 160-173, DOI: 10.1093/philmat/nki01
  4. Hale B., Wright C. (2001). Implicit Definition and the A Priori. In: Boghossian P., Peacocke C., eds. New Essays on the A Priori. Oxford: Clarendon Press, 2000: 286-319; In: Hale B., Wright C., eds. The Reason’s Proper Study. Oxford: Oxford-New York: Oxford University Press, 2001: 117-150.
  5. Hale B., Wright C. (2002). Benacerraf’s Dilemma Revisited. European Journal of Philosophy, 10: 101-129, DOI: 10.1111/1468-0378.0015
  6. Hellman G.. (2001). Three Varieties of Mathematical Structuralism. Philosophia Mathematica (III), 9: 184-211, DOI: 10.1093/philmat/9.2.18
  7. Linnebo O. (2009). The Individuation of the Natural Numbers. In: Bueno O., Linnebo O., eds. New Waves in Philosophy of Mathematics. Houndmills, Basingstoke: Palgrave Macmillan: 220-238.
  8. Maddy P. (2011). Defending the Axioms. Oxford-New York: Oxford University Press, DOI: 10.1093/acprof:oso/9780199596188.001.000
  9. Panza M., Sereni A. (2013). Plato’s Problem. An Introduction to Mathematical Platonism . Houndmills, Basingstoke: Palgrave Macmillan, DOI: 10.1057/978113729813
  10. Pincock C. (2004). A Revealing Flaw in Colyvan’s Indispensability Argument. Philosophy of Science, 71: 61-79, DOI: 10.1086/38141
  11. Pincock C. (2010). The Applicability of Mathematics. The Internet Encyclopedia of Philosophy, http://www.iep.utm.edu/math-app/Pincock C. (2012). Mathematics and Scientific Representation. Oxford-New York: Oxford University Press, DOI: 10.1093/acprof:oso/9780199757107.001.000
  12. Reck E. (2013). Frege or Dedekind? Towards a Reevaluation of their Legacies. In: Reck E., ed. The Historical Turn in Analytic Philosophy. London: Palgrave Macmillan: 139-170.
  13. Sereni A. (manuscript). Frege, Indispensability, and the Compatibilist Heresy, draft at: http://www.academia.edu/1823461/Frege_Indispensability_and_the_Compatibilist_Herey_Draft
  14. Shapiro S. (1997). Philosophy of Mathematics. Structure and Ontology. Oxford-New York: Oxford University Press.
  15. Shapiro S. (2000). Frege Meets Dedekind: A Neologicist Treatment of Real Analysis. Notre Dame Journal of Formal Logic, 41: 335-364, DOI: 10.1305/ndjfl/103833688
  16. Shapiro S. (2004). Foundations of Mathematics: Metaphysics, Epistemology, Structure. The Philosophical Quarterly, 54: 16-37, DOI: 10.1111/j.0031-8094.2004.00340
  17. Shapiro S. (2011). Epistemology of Mathematics: What Are the Questions? What Count as Answers?. The Philosophical Quarterly, 61: 130-150, DOI: 10.1111/j.1467-9213.2010.658
  18. Steiner M. (1988). The Applicability of Mathematics as a Philosophical Problem. Cambridge MA: Harvard University Press.
  19. Wright C. (2000). Neo-Fregean Foundations for Real Analysis: Some Reflections on Frege’s Constraint. Notre Dame Journal of Formal Logic, 41: 317-334, DOI: 10.1305/ndjfl/103833687
  20. Yablo S. (2001). Go Figure: a Path Through Fictionalism. Midwest Studies in Philosophy , 25: 72-102, DOI: 10.1111/1475-4975.0004
  21. Azzouni J. (2009). Evading Truth Commitments: The Problem Reanalyzed. Logique et Analyse, 206: 139-176.
  22. Bueno O., Colyvan M. (2011). An Inferential Conception of the Application of Mathematics, Nou _s, 45: 345-374, DOI: 10.1111/j.1468-0068.2010.00772
  23. Burgess J., Rosen G. (1997). A Subject With No Object. Strategies for Nominalistic Interpretation of Mathematics. Oxford-New York: Oxford University Press.
  24. Burgess J., Rosen G. (2005). Nominalism Reconsidered. In: Shapiro S., ed. The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford-New York: 2005: 515-536.
  25. Colyvan M. (2001). The Indispensability of Mathematics. Oxford-New York: Oxford University Press, DOI: 10.1093/019513754X.001.000
  26. Dummett M. (1991). Frege: Philosophy of Mathematics. Cambridge MA: Harvard University Press.

Andrea Sereni, Applications, applicability, and Frege’ s Constraint. Some remarks on Contemporary Platonism in "PARADIGMI" 3/2013, pp 91-110, DOI: 10.3280/PARA2013-003007