Mapping the climate in the urban fabric. The first step for farming the city

Titolo Rivista TERRITORIO
Autori/Curatori Matteo Clementi, Valentina Dessì, Mariana Pereira Guimarães
Anno di pubblicazione 2025 Fascicolo 2024/108-109
Lingua Inglese Numero pagine 11 P. 107-117 Dimensione file 680 KB
DOI 10.3280/TR2024-108010
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

Urban agriculture represents for the city a mix of opportunities from several perspectives. From an environmental point of view, as it uses water, soil and waste (as potential nutrients) can be part of urban and building metabolism. Furthermore, it can represent a useful piece for the continuity and strengthening of the urban green infrastructure, as it intercepts and enhances dedicated lots – shared community and municipal gardens – but also rooftops and vertical surfaces. From these premises, the bize_UrFarm research draws inspiration, introducing among the city’s resources that enhance urban agriculture the surfaces of buildings, which was previously considered an impediment to the development of urban agriculture in urbanized contexts.

L’agricoltura urbana rappresenta per la città un mix di opportunità sotto vari aspetti; dal punto di vista ambientale, utilizzando acqua, suolo e rifiuti (come potenziali nutrienti) può essere parte del metabolismo urbano e degli edifici. Inoltre, può rappresentare un tassello utile alla continuità e al rafforzamento dell’infrastruttura verde urbana, che intercetta e valorizza lotti dedicati – orti condivisi e orti comunali – ma anche coperture piane e superfici verticali. Da queste premesse prende spunto la ricerca bize_UrFarm che introduce tra le risorse della città che valorizzano l’agricoltura urbana le superfici degli edifici, ovvero il contesto urbanizzato, considerato fino a poco tempo fa un ostacolo allo sviluppo dell’agricoltura urbana.

Parole chiave:mappature gis; morfologia urbana; variabili climatiche

  1. Artmann M., Sartison K., 2018, «The role of urban agriculture as a nature-based solution: a review for developing a systemic assessment framework». Sustainability, 10, 6, 1937.
  2. Boano F., Caruso A., Costamagna E., Ridolfi L., Fiore S., Demichelis F., Masi F., 2020, «A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits». Science of the Total Environment, 134731.
  3. Bouët A., Debucquet D., 2016, «Food crisis and export taxation: Revisiting the adverse effects of noncooperative aspect of trade policies». In: Kalkuhl M., von Braun J., Torero M. (a cura di), Food price volatility and its implications for food security and policy. Springer Nature. DOI: 10.1007/978-3-319-28201-5_8
  4. Breda M.A., 2017, La tua casa. Atlante del patrimonio residenziale pubblico del Comune di Milano. Volume secondo con il catalogo dei beni dei Municipi 2, 3, 4 e 5. Milano: MM Spa.
  5. Chatzipoulka C., Compagnon R., Nikolopoulou M., 2016, «Urban geometry and solar availability on façades and ground of real urban forms: using London as a case study». Solar Energy, 138: 53-66.
  6. Clementi M., 2019 Progettare l’autosostenibilità locale: Strumenti e metodi di supporto alla progettazione ambientale integrata. Milano: Edizioni Ambiente.
  7. Clementi M., Dessì V., Podestà G.M., Chien S.C., Ang Ting Wei B., Lucchi E., 2024, «gis-Based Digital Twin Model for Solar Radiation Mapping to Support Sustainable Urban Agriculture Design». Sustainability, 6, 15, 6590.
  8. D’Ostuni M., Zaffi L., Appolloni E., Orsini F., 2022, «Understanding the complexities of Building-Integrated Agriculture. Can food shape the future built environment?». Futures, 144, 103061.
  9. Dessì V., Clementi M., 2023, «Mapping Urban Water Balance to support the integrated design of water cycles in the peri-urban areas». Journal Of Physics. Conference Series. IoP. 2600. DOI: 10.1088/17426596/2600/17/17200
  10. Dubbeling M., 2015, Integrating urban agriculture and forestry into climate change action plans: Lessons from Western Province, Sri Lanka and Rosario, Argentina. RUAF Foundation.
  11. fao, 2019, fao framework for the Urban Food Agenda. Rome: Food and Agriculture Organization of the United Nations.
  12. Girardet H., 2005, «Urban agriculture and sustainable urban development». In: A. Viljoen (ed.), CPULS: Continuous productive urban landscapes – Designing urban agriculture for sustainable cities. Amsterdam: Elsevier, 32-39.
  13. Hofierka J., Zlocha M., 2012, «A new 3-D solar radiation model for 3-D city models». Transaction in gis, 16: 681-690.
  14. Hofierka J., Suri M., 2002, «The solar radiation model for open-source gis: implementation and applications». In: Ciolli M., Zatelli P. (eds.), Proceedings of the Open-source gis-grass Users Conference. Trento: University of Trento.
  15. istat, Istituto nazionale di statistica, 2018, Sullo stato di degrado delle città e delle loro periferie. Cartogrammi del Comune di Milano. www. istat.it/it/archivio/202052 (accesso: 2024.06).
  16. ipcc, 2013, «Annex IV: Acronyms». In: Stocker T.F., Qin D., Plattner G.K., Tignor M.M.B, Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
  17. Iyad G., Mansour R., Davidová M., 2023, «AGRI|gen: Analysis and Design of a Parametric Modular System for Vertical Urban Agriculture». Sustainability, 15, 5284.
  18. Licka L., Scazzosi L., Timpe A., 2015, eds., Urban Agriculture Europe. Berlin: Jovis.
  19. McPhearson T., Karki M., Herzog C., Santiago Fink H., Abbadie L., Kremer P., Clark C. M., Palmer M.I., Perini K., 2018, «Urban ecosystems and biodiversity». In: Rosenzweig C., Solecki W., Romero-Lankao P., Mehrotra S., Dhakal S., Ali Ibrahim S., (eds.), Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network. Cambridge: Cambridge University Press. DOI: 10.1017/9781316563878.015
  20. Michaels S., 2005, «Urban Food Growing: New Landscapes, New Thinking». In: Viljoen A., Bohn K., Howe J. (eds.), Continuous Productive Urban Landscapes: Designing urban agriculture for sustainable cities. Oxford: Architectural Press.
  21. Muñoz-Liesa J., Toboso-Chavero S., Mendoza Beltran A., Cuerva E., Gallo E., Gassó-Domingo S., Josa A., 2021, «Building-integrated agriculture: Are we shifting environmental impacts? An environmental assessment and structural improvement of urban greenhouses». Resources, Conservation and Recycling, 169, 105526.
  22. Orsini F., Pennisi G., Gianquinto G.P., 2023, Agricoltura urbana. Tecnologie, sistemi e innovazione. Milano: Edagricole.
  23. Pasqui G., 2022, «Inequalities: Peripheries». In: Pasqui G. (ed.), Coping with the pandemic in fragile cities. Cham: Springer, 45-54. DOI: 10.1007/978-3-030-93979-3_5
  24. Peel M.C., Finlayson B.L., McMahon T.A., 2007, «Updated world map of the Köppen-Geiger climate classification». Hydrology and Earth System Science, 11: 1633-1644.
  25. Pereira Guimarães M., Moredia Valek A., Dessì V., Clementi M., 2021, «A simplified procedure to improve the usability of hydrodynamic modelling software in regenerative urban design». Journal Of Physics. Conference Series, 2042. DOI: 10.1088/1742-6596/2042/1/012063
  26. Pereira Guimarães M., Dessì V., 2025, «Blue-green urban oasis: creating strategic cool spots in overheated neighborhoods». Techne, 29. Firenze: fup Press.
  27. Pluchino P., 2019, La città vivente. Introduzione al metabolismo urbano circolare. Catania Malcor D’.
  28. Proksch G., 2017, Creating Urban Agricultural Systems. An Integrated Approach to Design. New York: Routledge.
  29. Pugliese R., 2005, La casa popolare in Lombardia: 1903-2003. Milano: Unicopli.
  30. Stewart I.D., Mills G.M., 2021, The Urban Heat Island: A Guidebook. Amsterdam: Elsevier.
  31. Stoker J.M., Brock J., Soulard C.E., Ries K.G., Sugarbaker L.J., Newton W.E., Haggerty P.K., Lee K., Young J.A., 2016, «USGS lidar science strategy – Mapping the technology to the science», Report-USGS 20151209.
  32. Tablada A., Kosoric V., 2022, «Vertical farming on facades: transforming building skins for urban food security», Rethinking Building Skins. Transformative Technologies and Research Trajectories. Woodhead Publishing Series in Civil and Structural Engineering, 11:285-311. DOI: 10.1016/B978-0-12-822477-9.00015-2
  33. Wolman A., 1965, «The metabolism of cities». Scientific American, 213: 179-190.

Matteo Clementi, Valentina Dessì, Mariana Pereira Guimarães, Mapping the climate in the urban fabric. The first step for farming the city in "TERRITORIO" 108-109/2024, pp 107-117, DOI: 10.3280/TR2024-108010