Business Intelligence Systems as innovation tool in the SMEs' Business Control Systems: A Bibliometric Literature Review

Titolo Rivista MANAGEMENT CONTROL
Autori/Curatori Alessandra Tafuro, Chiara Colamartino, Giuseppe Dammacco, Pierluigi Toma
Anno di pubblicazione 2025 Fascicolo 2025/1 Suppl.
Lingua Inglese Numero pagine 26 P. 121-146 Dimensione file 542 KB
DOI 10.3280/MACO2025-001-S1006
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

Digital technologies play a pivotal role in driving innovation within organizations and are increasingly essential for generating value in today’s evolving business environment. Among these technologies, Business Intelligence (BI) stands out by enhancing organizational control, reducing risks, and offering data-driven insights to support decision-making. For small and medium-sized enterprises (SMEs), BI tools can be especially valuable in systematically addressing control-related challenges. However, current research on the use of BI in SMEs remains limited and tends to focus only on specific areas such as management control, risk management, and auditing. This study introduces a novel, integrated approach to business control systems, combining data and perspectives from the three aforementioned areas. By utilizing BI tools, this method generates interconnected, actionable information that supports the long-term success of SMEs. To date, no bibliometric reviews have specifically explored the application of BI in SME contexts. This research addresses that gap by conducting a bibliometric analysis to highlight the diversity of methodologies used and their relevance to SMEs. The goal is to advance the field, bridge existing gaps in the literature, and encourage innovation in BI applications. Findings show strong SMEs interest in BI, particularly for managing risks, conducting audits, and monitoring organizational transformation.

Parole chiave:Bibliometric Literature Review, Business Control System, Business Intelligence, SMEs

  1. Ali W. A. (2019), Effects of business intelligence on the continuous auditing process, International Journal of Innovative Science and Research Technology, 4(3), pp. 377-383
  2. Alles M. G. (2015), Drivers of the use and facilitators and obstacles of the evolution of big data by the audit profession, Accounting Horizons, 29(2), pp. 439-449.
  3. Andoh-Baidoo F. K., Chavarria J. A., Jones M. C., Wang Y., & Takieddine S. (2022), Examining the state of empirical business intelligence and analytics research: A poly-theoretic approach, Information & Management, 59(6), 103677.
  4. Araz O. M., Choi T. M., Olson D. L., & Salman F. S. (2020), Role of analytics for operational risk management in the era of big data, Decision Sciences, 51(6), pp. 1320-1346.
  5. Arcari A., Pistoni A., Moretto E., Ossola P., Tonini D. (2016), How Italian companies are monitoring Innovation, Management Control, 2, pp. 143-165. DOI: 10.3280/MACO2016-002007
  6. Aria M., Cuccurullo C. (2017), Bibliometrix: An R-Tool For Comprehensive Science Mapping Analysis, Journal Of Informetrics, 11(4), pp. 959-975.
  7. Badia F., Donato F. (2022), Opportunities and risks in using big data to support management control systems: A multiple case study, Management Control, 3, pp 39-64. DOI: 10.3280/MACO2022-003003
  8. Bianchi C., Cosenz F., Marinkovic M. (2015), Designing dynamic performance management systems to foster SME competitiveness according to a sustainable development perspective: empirical shreds of evidence from a case-study, International Journal of Business Performance Management 31, 16(1), pp. 84-108. DOI: 10.1504/IJBPM.2015.066042
  9. Bisbe J., & Otley D. (2004), The effects of the interactive use of management control systems on product innovation, Accounting, organizations and society, 29(8), pp. 709-737.
  10. Boonsiritomachai W., McGrath G. M., & Burgess S. (2016), Exploring business intelligence and its depth of maturity in Thai SMEs, Cogent Business & Management, 3(1), 1220663. DOI: 10.1080/23311975.2016.1220663
  11. Broccardo L., Alfiero S., Culasso F. (2024), Enhancing Performance Management Systems in a challenging environment, Management Control, 1, pp. 5-14. DOI: 10.3280/MACO2024-001001
  12. Cardoni A. (2018), Le sfide evolutive del Management Control tra relazioni strategiche, innovazione e discontinuità: a knowledge transfer matter?, Management Control, 1, pp.5-15. DOI: 10.3280/MACO2018-001001
  13. Chadegani A. A., Salehi H., Yunus M. M., Farhadi H., Fooladi M., Farhadi M., & Ebrahim N. A. (2013), A comparison between two main academic literature collections: Web of Science and Scopus databases, Asian Social Sciences, 9, pp. 18-26.
  14. Chenhall R. H., & Moers F. (2015), The role of innovation in the evolution of management accounting and its integration into management control, Accounting, organizations and society, 47, pp. 1-13.
  15. Ciampi F., Gordini N. (2013), Small enterprise default prediction modeling through artificial neural networks: An empirical analysis of Italian small enterprises, Journal of Small Business Management, 51(1), pp. 23-45.
  16. Crane B. (2020), Revisiting who, when, and why stakeholders matter: Trust and stakeholder connectedness, Business & Society, 59(2), pp. 263-286. DOI: 10.1177/0007650318756983
  17. Cupertino S., Vitale G., Riccaboni A. (2018), L’impatto dei Big Data sulle attività di pianificazione & controllo aziendali: In caso di studio di una PMI agricola italiana, Management Control, 3, pp. 59-86. DOI: 10.3280/MACO2018-003004
  18. D’Onza G. (2008), Il sistema di controllo interno nella prospettiva del risk management, Milano: Giuffrè editore.
  19. Dávila A., Derchi G. B., Oyon D., & Schnegg M. (2024), External complexity and the design of management control systems: a case study, Management Accounting Research, 63, 100875.
  20. de Oliveira O. J., da Silva F. F., Juliani F., Barbosa L. C. F. M., & Nunhes T. V. (2019), Bibliometric method for mapping the state-of-the-art and identifying research gaps and trends in literature: An essential instrument to support the development of scientific projects, in Scientometrics recent advances. IntechOpen.
  21. De Santis F., D’Onza G. (2021), Big data and data analytics in auditing: in search of legitimacy, Meditari Accountancy Research, 29(5), pp. 1088-1112. DOI: 10.1108/MEDAR-03-2020-0838
  22. Dedic N., & Stanier C. (2017), Measuring the success of changes to business intelligence solutions to improve business intelligence reporting, Journal of Management Analytics, 4(2), pp. 130-144. DOI: 10.1080/23270012.2017.1299048
  23. Donthu N., Kumar S., Mukherjee D., Pandey N., & Lim W. M. (2021a), How to conduct a bibliometric analysis: An overview and guidelines, Journal of business research, 133, pp. 285-296.
  24. Donthu N., Kumar S., Pandey N., & Lim W. M. (2021b), Research constituents, intellectual structure, and collaboration patterns, Journal of International Marketing, 29(2), pp. 1-25. DOI: 10.1177/1069031X211004234
  25. El Masri T., Tekathen M., Magnan M., & Boulianne E. (2017), Calibrating management control technologies and the dual identity of family firms, Qualitative Research in Accounting & Management, 14(2), pp. 157-188. DOI: 10.1108/QRAM-05-2016-0038
  26. Fink L., Yogev N., & Even A. (2017), Business intelligence and organizational learning: An empirical investigation of value creation processes, Information & management, 54(1), pp. 38-56.
  27. Garengo P., Biazzo S., Bititci U.S. (2005), Performance measurement systems in SMEs: A review for a research agenda, International Journal of Management Reviews, 7(1), pp. 25-47.
  28. Gerdin J. (2020), Management control as a system: Integrating and extending theorizing on MC complementarity and institutional logics, Management Accounting Research, 49, 100716.
  29. Habib A., Bhuiyan M. B. U., & Wu J. (2021), Corporate governance determinants of financial restatements: a meta-analysis, The International Journal of Accounting, 56(01), 2150002. DOI: 10.1142/S1094406021500025
  30. Isik Ö., Jones M.C. and Sidorova A. (2013), Business intelligence success: the roles of BI capabilities and decision environments, Information & Management, 50(1), pp. 3-23.
  31. Jans M., Lybaert N., Vanhoof K. (2010), Internal fraud risk reduction: Results of a data mining case study, International Journal of Accounting Information Systems, 11(1), pp. 17-41.
  32. Kikawa C. R., Kalema B. M., & Carol M. N. (2019), A statistical analysis of business intelligence acceptance by SMEs in the city of Tshwane, Republic of South Africa, Academy of Entrepreneurship Journal, 25(2), pp. 1-19.
  33. Llave M. R. (2017), Business intelligence and analytics in small and medium-sized enterprises: A systematic literature review, Procedia Computer Science, 121, pp. 194-205.
  34. López O.L., Hiebl M.R.W. (2015), Management Accounting in Small and Medium-Sized Enterprises: Current Knowledge and Avenues for Further Research, Journal of Management Accounting Research, 27(1), pp. 81-119.
  35. Lotka A. J. (1926), The frequency distribution of scientific productivity, Journal of the Washington academy of sciences, 16(12), pp. 317-323.
  36. Mancini D. (2016), Accounting Information Systems in an Open Society. Emerging Trends and Issues, Management Control, 1, pp. 5-16. DOI: 10.3280/MACO2016-001001
  37. Marchi L., Greco G. (2016), Percorsi di integrazione tra auditing e controllo di gestione, Management Control, 3, pp. 5-7 DOI: 10.3280/MACO2016-001001
  38. Montemari M., Nielsen C. (2021), Big data for business modeling: Towards the next generation of performance measurement systems?, Management Control, Suppl. 1., pp. 5-10. DOI: 10.3280/MACO2021-001-S1001
  39. Muryjas P. (2014), Business intelligence for small and medium sized businesses, Actual Problems of Economics, 151(1), pp. 469-476.
  40. Nguyen T. H. (2009), Information technology adoption in SMEs: an integrated framework, International Journal of Entrepreneurial Behavior & Research, 15(2), pp. 162-186. DOI: 10.1108/13552550910944566/FULL/XML
  41. O’Grady W., Morlidge S., & Rouse P. (2016), Evaluating the completeness and effectiveness of management control systems with cybernetic tools, Management Accounting Research, 33, pp. 1-15.
  42. Öztürk O., Kocaman R. & Kanbach D.K. (2024), How to design bibliometric research: an overview and a framework proposal, Rev Manag Sci.
  43. Paes L. A. B., Bezerra B. S., Deus R. M., Jugend D., & Battistelle R. A. G. (2019), Organic Solid Waste Management in a Circular Economy Perspective – A Systematic Review and Swot Analysis, Journal of Cleaner Production, 239, 118086.
  44. Petrosino A., Mancini D., Garzella S., Lamboglia R. (2018), La Business Intelligence e la Business Analytics nell’era dei Big Data: una analisi della letteratura, Management Control, 3, pp. 31-58. DOI: 10.3280/MACO2018-003003
  45. Poba-Nzaou P., Uwizeyemungu S., & Saada M. (2019), Critical barriers to business intelligence open-source software adoption,. International Journal of Business Intelligence Research, 10(1), pp. 59-79. DOI: 10.4018/IJBIR.2019010104
  46. Popovic A., Puklavec B., & Oliveira T. (2019), Justifying business intelligence systems adoption in SMEs: Impact of systems use on firm performance, Industrial Management & Data Systems, 119(1), pp. 210-228. DOI: 10.1108/IMDS-02-2018-0085
  47. Ragazou K., Passas I., Garefalakis A., & Zopounidis C. (2023), Business intelligence model empowering SMEs to make better decisions and enhance their competitive advantage, Discover Analytics, 1(1), 2.
  48. Rao-Graham L., McNaughton M. L., & Mansingh G. (2019), Business intelligence for small and medium-sized enterprises: an agile roadmap toward business sustainability, Auerbach Publications. DOI: 10.1201/9780429316371
  49. Rakipi R., De Santis F., & D’Onza G. (2021), Correlates of the internal audit function’s use of data analytics in the big data era: Global evidence, Journal of International Accounting, Auditing and Taxation, 42, 100357.
  50. Roux M., Chowdhury S., Kumar Dey P., Vann Yaroson E., Pereira V., & Abadie A. (2023), Small and medium-sized enterprises as technology innovation intermediaries in sustainable business ecosystem: interplay between AI adoption, low carbon management and resilience, Annals of Operations Research, pp. 1-50.
  51. Sarkis-Onofre R., Catalá-López F., Aromataris E., & Lockwood C. (2021), How to properly use the PRISMA Statement, Systematic Reviews, 10, pp. 1-3.
  52. Scholz P., Schieder C., Kurze C., Gluchowski P., & Bohringer M. (2010), Benefits and Challenges of Business Intelligence Adoption in Small and Medium-Sized Enterprises, in Proceedings of the 18th European Conference on Information Systems.
  53. Visani F. (2017), Applying business analytics for performance measurement and management. The case study of a software company, Management Control, 2, pp. 89-123. DOI: 10.3280/MACO2017-002006
  54. Webb L. R. (2012), Business intelligence in audit. International Journal of Business Intelligence Research, 3(3), pp. 42–53.
  55. Wee M., Scheepers H., & Tian X. (2022), Understanding the processes of how small and medium Enterprises derive value from business intelligence and analytics, Australasian Journal of Information Systems, 26.
  56. Wong S., & Venkatraman S. (2015), Financial accounting fraud detection using business intelligence, Asian Economic and Financial Review, 5(11), pp. 1187-1207.
  57. Wu D. D., Chen S.-H., & Olson D. L. (2014), Business intelligence in risk management: Some recent progresses, Information Sciences, 256, pp. 1-7.
  58. Yu J., & Muñoz-Justicia J. (2020), A bibliometric overview of twitter-related studies indexed in web of science, Future Internet, 12(5), 91.
  59. Zamani E. D., Smyth C., Gupta S., & Dennehy D. (2023), Artificial intelligence and big data analytics for supply chain resilience: a systematic literature review, Annals of Operations Research, 327(2), pp. 605-632.
  60. Zuca M., & ?în?a A. (2018), The contribution of computer assisted auditing techniques (CAAT) and of the business intelligence instruments in financial audit., Academic Journal of Economic Studies, 4(1), pp. 183-191. -- https://ideas.repec.org/a/khe/scajes/v4y2018i1 p183-191.html.

Alessandra Tafuro, Chiara Colamartino, Giuseppe Dammacco, Pierluigi Toma, Business Intelligence Systems as innovation tool in the SMEs' Business Control Systems: A Bibliometric Literature Review in "MANAGEMENT CONTROL" 1 Suppl./2025, pp 121-146, DOI: 10.3280/MACO2025-001-S1006